

SEED

UPPSALA UNIVERSITET

Improving Generalization in Game Agents with Data Augmentation in Imitation Learning

Derek Yadgaroff, Alessandro Sestini, Konrad Tollmar, Ayca Ozcelikkale, Linus Gisslén

WCCI 2024 - CEC Special Session on Games

Electronic Arts

Automated Game Testing

Ē

Testing SPACE

Imitation Learning for Game Testing¹

Property Setup time Exploration Exploitation Controllability Generalization ML knowledge required Programming needed

¹Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning, Sestini et al., 2023

Other1

Other2

ĒA

Automated Game Testing - An Example

Problem

- Designers can use prior knowledge to guide the agent towards its goal.
- For an agent to deal **out-of-distribution** data we need significant number of datasamples.
- We investigate how to improve generalization reducing data need via **data augmentation**.

Data Augmentation

Data Augmentation

Data Augmentation

 (s_t, a_t, s_{t+1})

 (s_t, a_t, s_{t+1})

 (s_t, a_t, s_{t+1})

 S_t

0.67

0.16

0.43

ĒA

Our Approach - Augmentations

Uniform Noise:

Scaling:

State-MixUp:

Gaussian Noise: $\hat{s}_t = s_t + \epsilon$ where $\epsilon \sim N(\mu, \sigma)$.

$\hat{s}_t = s_t + \epsilon$ where $\epsilon \sim U(-\lambda, \lambda)$.

 $\hat{s}_t = s_t * \epsilon$ where $\epsilon \sim U(\alpha, \beta)$.

 $\hat{s}_t = s_t * \epsilon + s_{t+1} * (1 - \epsilon)$ where $\epsilon \sim \beta(\alpha, \alpha)$.

Our Approach - Augmentations

Continuous Dropout:

Semantic Dropout:

Our Approach - Training Algorithm

• Given a **demonstration** dataset of N trajectories τ_i :

$D = \{\tau_i | \tau_i = (s_0^i, a_0^i, \dots, s_T^i, a_T^i), i = 1, \dots, N\},\$

• the objective aims to **mimic** the expert behavior which is represented by the dataset D:

$L = \arg \max_{\theta}$

$$x \mathbb{E}_{(s,a)\sim D}[\log \pi_{\theta}(a|s)].$$

Experiments - Environment³

³Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning, Sestini et al., 2023

Experiments - Environment³

Training Environment

³Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning, Sestini et al., 2023

Experiments - Environment³

Training Environment

Testing Environment

³Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning, Sestini et al., 2023

Create Demonstrations

Choose Augmentations Combinations

Choose Augmentations Combinations

Clone Dataset and Apply Augmentations

Choose Augmentations Combinations

Clone Dataset and Apply Augmentations

Experiments - State Space

Agent Info

agent position, current health, ammunitions, ...

objects of interest, relative and absolute positions, ...

Entities Info

Semantic Map

5x5x5 map centered in the position of the agent

Experiments - Neural Network

performance of the original agent, especially in the testing environments?

Can we find at least one data augmentation combinations that improve the

Can we find at least one data augmentation combinations that improve the performance of the original agent, especially in the testing environments?

What is the best combination of augmentation that has the **highest performance** on all the testing environments?

Can we find at least one data augmentation combinations that **improve the** performance of the original agent, especially in the testing environments?

What is the best combination of augmentation that has the **highest performance** on all the testing environments?

What is the **single most effective** augmentation? Is there a single most effective augmentation?

Experiments - Quantitative Results

scaling + cont. dropout + state mixup Gaussian + scaling + cont. dropout uniform + scaling Gaussian + scaling scaling + cont. dropout + state mixup Gaussian + scaling uniform + scaling + state mixup scaling + cont. dropout Gaussian + scaling + state mixup Gaussian + scaling Gaussian + scaling scaling + state mixup Gaussian + scaling + state mixup Gaussian + scaling + state mixup scaling + cont. dropout scaling scaling + sem. dropout uniform + scaling + cont. dropout sem. dropout uniform + sem. dropout

Augmentations Selected

0.4

Experiments - Quantitative Results

scaling + cont. dropout + state mixup Gaussian + scaling + cont. dropout uniform + scaling Gaussian + scaling scaling + cont_dropout + state mixun Augmentations can yield large **improvements** over the baseline model. However, the large standard deviation indicates that models may be sensitive to training parameters.

scaling + sem. dropout uniform + scaling + cont. dropout sem. dropout uniform + sem. dropout

Augmentations Selected

0.4

ZA

2

Experiments - Consistency

Gaussian + scaling + state mixup uniform + scaling Gaussian + scaling scaling + state mixup Gaussian + scaling scaling + con.t dropout uniform + scaling Gaussian + scaling Gaussian + scaling Gaussian + scaling + cont. dropout Gaussian + scaling + state mixup scaling + cont. dropout scaling + cont. dropout + state mixup Gaussian + scaling + state mixup scaling + cont. dropout + state mixup uniform + scaling + cont. dropout scaling sem. dropout uniform + sem. Dropout

Augmentations Selected

0 N

2

Experiments - Consistency

Gaussian + scaling + state mixup uniform + scaling Gaussian + scaling scaling + state mixup Gaussian + scaling scaling + con.t dropout uniform + scaling Gaussian + scaling Gaussian + scaling

> None of the best have the highest relative success rates. This suggests that there is a trade-off between best achievable generalization performance and **consistency** over all testing environments.

Augmentations Selected

Gaussi

scaling +

scaling +

Gaus

Gaus

unifor

Num experiments model outperformed the baseline

3

Experiments - Consistency

scaling + cont. dropout + state mixup Gaussian + scaling + cont. dropout uniform + scaling Gaussian + scaling scaling + cont. dropout + state mixup Gaussian + scaling uniform + scaling + state mixup scaling + cont. dropout Gaussian + scaling + state mixup Gaussian + scaling Gaussian + scaling scaling + state mixup Gaussian + scaling + state mixup Gaussian + scaling + state mixup scaling + cont. dropout scaling scaling + sem. dropout uniform + scaling + cont. dropout sem. dropout uniform + sem. dropout

Augmentations Selected

0.4

3

Experiments - Consistency

scaling + sem. dropout uniform + scaling + cont. dropout sem. dropout uniform + sem. dropout

Augmentations Selected

Record (F5) Train (F6)

Improvise

Some Results - Without Augmentations

ĒA

H H H

Contacts

https://www.ea.com **Electronic Arts:**

Open Positions: <u>ea.com/careers</u>

SEED:

seed.ea.com

Role

Senior Computer Vision Researcher (Digital Humans) - SEED

SEED Master Thesis Intern

Senior Research Scientist (Computer Vision) - SEED

Senior Physics Software Engineer

Rendering Engineer - SEED

Area of Interest	Location	Apply
Software Development	Toronto, Canada Vancouver, Canada	Apply Now
Software Development	Stockholm, Sweden	Apply Now
Software Development	Toronto, Canada Vancouver, Canada	Apply Now
Software Development	Toronto, Canada Vancouver, Canada Guildford, United Kingdom	Apply Now
Software Development	Toronto, Canada Vancouver, Canada	Apply Now

[1] S4RL: Surprisingly Simple Self-Supervision for Offline Reinforcement Learning, Sinha et al., 2021

[2] Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning, Sestini et al., 2023

[3] Improving Generalization in Game Agents with Data Augmentation in Imitation Learning, Yadgaroff et al., 2024

