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Automated Game Testing
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Automated Game Testing - An Example



• Designers can use prior knowledge to guide 

the agent towards its goal.

• For an agent to deal out-of-distribution data 

we need significant number of datasamples.

• We investigate how to improve generalization 

reducing data need via data augmentation.

Problem
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Data Augmentation with Agents2
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Our Approach - Augmentations

Gaussian Noise:      𝑠!
̂
= 𝑠! + 𝜖 where 𝜖 ∼ 𝑁(𝜇, 𝜎).

Uniform Noise:        𝑠!
̂
= 𝑠! + 𝜖 where 𝜖 ∼ 𝑈(−𝜆, 𝜆).

Scaling:                   𝑠!
̂
= 𝑠! ∗ 𝜖 where 𝜖 ∼ 𝑈(𝛼, 𝛽).

State-MixUp:           𝑠!
̂
= 𝑠! ∗ 𝜖 + 𝑠!"# ∗ 1 − 𝜖 where 𝜖 ∼ 𝛽(𝛼, 𝛼).
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Our Approach - Augmentations

Continuous Dropout:     

Semantic Dropout:          



Our Approach - Training Algorithm

• Given a demonstration dataset of 𝑁 trajectories 𝜏%:

• the objective aims to mimic the expert behavior which is represented by the dataset 𝐷:

  

𝐷 = {𝜏!|𝜏! = (𝑠"! , 𝑎"! , . . . , 𝑠#! , 𝑎#! ), 𝑖 = 1, . . . , 𝑁},

𝐿 = arg 𝑚𝑎𝑥
$

𝔼(&,()∼+[log 𝜋$(𝑎|𝑠)].
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Experiments - Environment3

Training Environment
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Experiments - Environment3

Training Environment

Testing Environment
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Experiments - Augmentations
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Experiments - State Space

Agent Info Entities Info Semantic Map

agent position, current health, 
ammunitions, …

objects of interest, relative 
and absolute positions, …

5x5x5 map centered in the 
position of the agent



Experiments - Neural Network
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Can we find at least one data augmentation combinations that improve the 

performance of the original agent, especially in the testing environments?

What is the best combination of augmentation that has the highest performance

on all the testing environments? 

What is the single most effective augmentation? Is there a single most effective 

augmentation?
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Experiments - Quantitative Results
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improvements over the baseline model. 
However, the large standard deviation 

indicates that models may be sensitive to 
training parameters.
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None of the best have the highest relative 
success rates. This suggests that there is a 

trade-off between best achievable 
generalization performance and 

consistency over all testing environments. 

Experiments - Consistency2
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Scaling (1.27), state mixup (1.26), 
continuous dropout (1.26), Gaussian noise 
(1.25), uniform noise (1.02), and semantic 

dropout (0.50). 
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Some Results - With Augmentations



38

Some Results - Without Augmentations
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VIDEOOOOO

Conclusion
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