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Imitation Learning for Game Testing’
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@ Automated Game Testing - An Example
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e Designers can use prior knowledge to guide

the agent towards its goal.

e [or an agent to deal out-of-distribution data

we need significant number of datasamples.

e \We Investigate how to improve generalization

reducing data need via data augmentation.
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Data Augmentation with Agents?
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2S4RL: Surprisingly Simple Self-Supetrvision for Offline Reinforcement Learning, Sinha et al., 2021
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Data Augmentation with Agents?
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Data Augmentation with Agents?
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Our Approach - Augmentations

Gaussian Noise: s, = s, + € where € ~ N(u, o).
Uniform Noise: s, = s; + € where € ~ U(—A1,1).

Scaling: S; = S x€ where e ~U(a,p).

State-MixUp: St =Sp*x€+ 5,1 % (1 —€) where e ~ B(a,a).




Our Approach - Augmentations

Continuous Dropout:
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Semantic Dropout:
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Our Approach - Training Algorithm

e Given a demonstration dataset of N trajectories T;:
_ — (ol Al L Al 7 —
D = {t;|t; = (sg,aq,...,S7,a7),i =1,...,N},

e the objective aims to mimic the expert behavior which is represented by the dataset D:

L = arg m@ax[E(S’a),\,D llog mg(als)].




Experiments - Environment®
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Experiments - Augmentations
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Experiments - Augmentations
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Experiments - Augmentations
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Experiments - State Space
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agent position, current health, objects of interest, relative 5x5x5 map centered in the

ammunitions, ... and absolute positions, ... position of the agent
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Research Questions




Research Questions

Can we find at least one data augmentation combinations that improve the

performance of the original agent, especially in the testing environments?




Research Questions

Can we find at least one data augmentation combinations that improve the

performance of the original agent, especially in the testing environments?

What is the best combination of augmentation that has the highest performance

on all the testing environments?




Research Questions

Can we find at least one data augmentation combinations that improve the

.1
performance of the original agent, especially in the testing environments?

5 What is the best combination of augmentation that has the highest performance
on all the testing environments?

3 What is the single most effective augmentation? Is there a single most effective

augmentation?




1) Experiments - Quantitative Results
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1) Experiments - Quantitative Results
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u Augmentations can yield large
o Improvements over the baseline model.
However, the large standard deviation

Augmentations Selected

iIndicates that models may be sensitive to
G training parameters.
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Experiments

Augmentations Selected
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2 Experiments - Consistency
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3 Experiments - Consistency
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3 Experiments - Consistency

scaling + cont. dropout + state mixup
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Scaling (1.27), state mixup (1.26),
continuous dropout (1.26), Gaussian Noise
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(1.25), unitorm noise (1.02), and semantic
Gen: dropout (0.50).
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@ Contacts

email: asestini@ea.com
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Electronic Arts:  https://www.ea.com

Open Positions: ea.com/careers
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Toronto, Canada
Senior Computer Vision Researcher (Digital Humans) - SEED Software Development Apply Now
Vancouver, Canada

SEED Master Thesis Intern Software Development Stockholm, Sweden Apply Now

Toronto, Canada
Senior Research Scientist (Computer Vision) - SEED Software Development Apply Now
Vancouver, Canada

Toronto, Canada
Senior Physics Software Engineer Software Development Vancouver, Canada Apply Now

Guildford, United Kingdom

Toronto, Canada
Rendering Engineer - SEED Software Development Apply Now
Vancouver, Canada
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